Search results for "Galaxy formation"
showing 10 items of 25 documents
Structure finding in cosmological simulations: the state of affairs
2013
The ever increasing size and complexity of data coming from simulations of cosmic structure formation demands equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the "halo finder comparison project": we investigate in detail the (possible) origin of any deviations across finders. To this extent we decipher…
Some aspects of the orientation of galaxies in clusters
2013
The analysis of Tully's groups of galaxies belonging to the Local Supercluster (LSC) was performed. In the 1975 Hawley and Peebles presented the method for investigations of the galaxies orientation in the large structures. In our previous papers statistical test proposed by Hawley and Peebles for investigation of this problem was analyzed in details and some improvements were suggested. On this base the new method of the analysis of galactic alignment in clusters was proposed. Using this method, God{\l}owski (2012) analyzed the orientation of galaxies inside Tully's group founding no significant deviations from isotropy both in orientation of position angles and $\delta_D$ and $\eta$ angle…
Radio mode feedback: Does relativity matter?
2017
Radio mode feedback, associated with the propagation of powerful outflows in active galaxies, is a crucial ingredient in galaxy evolution. Extragalactic jets are well collimated and relativistic, both in terms of thermodynamics and kinematics. They generate strong shocks in the ambient medium, associated with observed hotspots, and carve cavities that are filled with the shocked jet flow. In this Letter, we compare the pressure evolution in the hotspot and the cavity generated by relativistic and classical jets. Our results show that the classical approach underestimates the cavity pressure by a factor larger or equal to 2 for a given shocked volume during the whole active phase. The tensio…
The star formation activity in cosmic voids
2014
Using a sample of cosmic voids identified in the Sloan Digital Sky Survey Data Release 7, we study the star formation activity of void galaxies. The properties of galaxies living in voids are compared with those of galaxies living in the void shells and with a control sample, representing the general galaxy population. Void galaxies appear to form stars more efficiently than shell galaxies and the control sample. This result can not be interpreted as a consequence of the bias towards low masses in underdense regions, as void galaxy subsamples with the same mass distribution as the control sample also show statistically different specific star formation rates. This highlights the fact that g…
Clues on the Milky Way disc formation from population synthesis simulations
2016
Cosmic magnetic fields with masclet: an application to galaxy clusters
2020
We describe and test a new version of the adaptive mesh refinement (AMR) cosmological code MASCLET. The new version of the code includes all the ingredients of its previous version plus a description of the evolution of the magnetic field under the approximation of the ideal magneto-hydrodynamics (MHD). To preserve the divergence-free condition of MHD, the original divergence cleaning algorithm of Dedner et al. (2002) is implemented. We present a set of well-known 1D and 2D tests, such as several shock-tube problems, the fast rotor and the Orszag-Tang vortex. The performance of the code in all the tests is excellent with estimated median relative errors of $\nabla \cdot {\bf B}$ in the 2D t…
Galactic Magnetic Fields As a Consequence of Inflation
2002
The generation of a magnetic field in the Early Universe is considered, due to the gravitational production of the Z-boson field during inflation. Scaled to the epoch of galaxy formation this magnetic field suffices to trigger the galactic dynamo and explain the observed galactic magnetic fields. The mechanism is independent of the inflationary model.
Hypersensitive tunable Josephson escape sensor for gigahertz astronomy
2020
Sensitive photon detection in the gigahertz band constitutes the cornerstone to study different phenomena in astronomy, such as radio burst sources, galaxy formation, cosmic microwave background, axions, comets, gigahertz-peaked spectrum radio sources and supermassive black holes. Nowadays, state of the art detectors for astrophysics are mainly based on transition edge sensors and kinetic inductance detectors. Overall, most sensible nanobolometers so far are superconducting detectors showing a noise equivalent power (NEP) as low as 2x10-20 W/Hz1/2. Yet, fast thermometry at the nanoscale was demonstrated as well with Josephson junctions through switching current measurements. In general, det…
The KeV Majoron as a dark matter particle
1993
We consider a very weakly interacting KeV majoron as dark matter particle (DMP), which provides both the critical density $\rho_{cr} = 1.88 \times 10^{-29} h^{2}$ $g/cm^{3}$ and the galactic scale $M_{gal}$ $\sim m^{3}_{Pl}/m^{2}_{J} \sim 10^{12} M_{\odot} (m_{J}/1 KeV)^{-2}$ for galaxy formation. The majoron couples to leptons only through some new "directly interacting particles", called DIPS, and this provides the required smallness of the coupling constants. If the masses of these DIPS are greater than the scale $V_s$ characterizing the spontaneous violation of the global lepton symmetry they are absent at the corresponding phase transition ($T \sim V_s$) and the majorons are produced d…
Gaia DR2 reveals a star formation burst in the disc 2-3 Gyr ago
2019
We use Gaia DR2 magnitudes, colours and parallaxes for stars with G<12 to explore a 15-dimensional space that includes simultaneously the initial mass function (IMF) and a non-parametric star formation history (SFH) for the Galactic disc. This inference is performed by combining the Besancon Galaxy Model fast approximate simulations (BGM FASt) and an approximate Bayesian computation algorithm. We find in Gaia DR2 data an imprint of a star formation burst 2-3 Gyr ago, in the Galactic thin disc domain, and a present star formation rate (SFR) of about 1 Msun. Our results show a decreasing trend of the SFR from 9-10 Gyr to 6-7 Gyr ago. This is consistent with the cosmological star formation …